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ABSTRACT 

POST-JUVENILE BRAIN DEVELOPMENT MODULATES SEIZURE 

CHARACTERISTICS AND DIAZEPAM EFFICACY IN THE RAT PILOCARPINE-SE 

MODEL 

By WILLIAM H. HOLBERT 11, M.S. 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of 
Science at Virginia Commonwealth University. 

Virginia Commonweal.th University, 2005 

Major Director: Severn B. Chum, Ph.D 
Associate Professor, Departments of Neurology, Anatomy and Neurobiology, 

Pharmacology and Toxicology, and Physiology 
Director, Molecular Neuroscience Research Facility 

These studies were completed to examine how status epilpeticus seizure 

characteristics are modulated during post-juvenile brain development. This may determine 

if postnatal age in rats is a better identifier of stages of post-juvenile brain development. 

The first study fully detailed the acute discrete seizure phase of the rat pilocarpine-SE 

model. Results for this study showed that Racine behavioral severity score, spike 
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frequency, and seizure severity during the acute discrete seizure phase change in relation to 

post-juvenile brain developmental stages. The second study fully detailed early and late 

patterns of status epilepticus. Results for this study displayed modulation of time in 

pattern, spike frequency, and relative delta power for seizure pattern during post-juvenile 

ages. The third study displayed modulation of diazepam efficacy during post-juvenile 

ages. The data suggest characteristics in the acute discrete seizure pliase, chronic SE 

phase, and therapeutic window of SE change in relation to age during post-juvenile brain 

development. This establishes that age is a better estimator of developmental stage than 

animal bodyweight. 
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INTRODUCTION 

Epilepsy 
Epilepsy is classified as a syndrome of recurrent partial or generalized seizures 

that are a result of abnormal electrical activity originating in cerebral neurons. This 

syndrome affects 1-2% of the United States population and 50 million people worldwide. 

The highest incidence has been shown to be in children five years old or younger [I] . 

Although some cases are genetic, the majority are caused by hypoxia, brain trauma, and 

the neurological emergency, status epilepticus [I]. 

Status Epilepticus 

The classical definition of status epilepticus (SE) is continuous seizure activity 

lasting 30 minutes or longer without self termination [2-41. A more recent definition is 

that SE can be identified as five minutes or more of continuous seizure activity [5]. 

Approximately 150,000 cases are reported each year with many resulting in morbidity 

and mortality [2, 5-81. SE can result in high mortality in the elderly, intellectual 

dysfunction, and motor deficits in children [2,4-81. In addition, 20-40% of epilepsy 

cases are a direct result of an episode of status epilepticus [5]. The insult from SE can 

cause a predictable pattern of serious neuronal injury [5]. 
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As SE progresses different seizure patterns have been identified [9-111. One 

study, Treiman et a1 , organized an episode of SE into five predictable seizure patterns 

[9]. First came a period of acute self terminating discrete seizures; second was a pattern 

of merging seizures which cycled between periods of waxing and waning intensity [9]. 

The third stage was identified as a pattern of continuous ictal activity; the fourth was 

continuous ictal activity with electro-decrimental pauses (flat periods); and the fifth 

observed pattern a period of periodic lateralized epileptiform discharges [9]. Another 

study, Handforth et a1 1995, further detailed an episode of SE into early and late stages of 

predictable seizure patterns [lo, 1 11. 

Many anti-epileptic drugs fail to terminate status epilepticus [5, 12- 141. In 

addition, of the drugs that do terminate SE many lose their therapeutic efficacy from tlie 

onset and during progression of SE [5, 12-14]. One compound that has been shown to 

work is the benzodiazepine diazepam [13, 15- 171. This conlpound has a high therapeutic 

index and rapidly crosses the blood brain barrier. However, diazepam can also lose 

therapeutic effectiveness as SE progresses [12- 141. 

Electroencephalogram (EEG) 

One tool to measure brain activity during an SE event is the electroencephalogram 

or EEG [18]. The earliest publication on the use of the human EEG was completed in 

the 1920's by Hans Berger, a German neuro-psychiatrist [18]. Since the 1920's the EEG 

has been used to diagnose a variety of neural ailments, brain trauma, and the syndrome of 

epilepsy. The EEG functions through scalp recordings that measure the brain's electrical 

activity [18]. The electrical activity that is measured is summed excitatory and inhibitory 

post synaptic potentials [18]. In addition, rhythmic oscillations from the thalamus create 
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cortical neuron firing. Alterations of normal brain activity such as epilepsy often result 

in a slowing EEG [18]. This results in changed frequency activity in the EEG and may 

be represented as spikes or spike and wave complexes. 

Pilocarpine-SE model 

Many animal models are used to study status epilepticus [9-11, 191. The accepted 

model of choice is the pilocarpine-SE model of limbic epilepsy [19,20]. This model 

provides a good representation of the human condition and has a predictable timeline. 

First, animals are pretreated with n~ethylscopolarnine, a muscariilic antagonist that is 

excluded by the blood brain barrier, approximately twenty minutes prior to pilocarpine 

injection to reduce peripheral effects [2 1-24]. Once pilocarpine, a muscarinic agonist, is 

injected, the first ictal activity begins approximately 17.0*1.5 minutes later [21-251. This 

starts the discrete seizure phase of SE that can last between 8.0-16.0 minutes [9-11,21- 

251. At the end of this phase, seizures merge without a clearly defined termination [9-11, 

21-25]. This indicates the onset of the SE phase and the progression into predictable 

seizure patterns [9- 1 1, 2 1-25]. One caveat exists with this model; there is high degree of 

variability in reported results of SE [20,21]. 

Aging and Post-Juvenile Brain Development 

Several problems exist wl~en analyzing the incidence of SE in the general 

population. It has been shown that a higher incidence of SE exists in children and the 

elderly [1, 2, 5,20, 21, 26-31]. In addition, of the SE cases reported, most are in children 

five years or younger, and the elderly experience a high degree of mortality when 

afflicted with SE [1, 2, 5,20,21,26-311. This has led to a major amount of research 

done on infant, juvenile, and geriatric animals [lo, 1 1, 24,29, 32-45]. Few studies exist 
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that fully characterize SE in post-juvenile aged animals. Furthermore, many laboratories 

that do study SE in adolescence or adulthood use weight as an estimator for 

developmental stage [9- 1 1 ,24 ,4  1,42,45]. It has been shown that body weight does not 

parallel brain development in humans and rats [38,46-501. 

This study was comprised of three phases that investigated seizure characteristics, 

severity, and drug efficacy of SE during post-juvenile ages. The first part of this study 

was performed to detail seizure characteristics and severity of the acute discrete seizure 

phase of SE during post-juvenile brain development. Ages were represented by 

postnatal day (P) in 10 day increments. Seizures were induced using the model 

previously described and EEG data obtained. Animals were characterized in the acute 

discrete seizure phase for seizure termination profiles, composite spectral analysis, 

behavioral severity, spike frequency, time characteristics, and absolute and relative delta 

band power. The data suggest that discrete seizures in the acute discrete seizure phase 

change during post-juvenile brain developmental ages. 

The second phase of this study examined the status epilepticus phase. Animals 

were characterized in the SE phase for time in seizure pattern, spike frequency in seizure 

pattern, and relative delta percentage in seizure pattern. In addition, correlations were 

established with characteristics of the first phase. The data suggested that severity was 

altered by age and not seizure pattern. In addition, age was a better estimator of post- 

juvenile developmental stage than animal body weight. 

The third phase was a study conducted on post-juvenile animals concerning drug 

efficacy in the therapeutic window. Three postnatal ages (P30, P50, P90 days) were 

subjected to SE and injected with diazepam in time increments that allowed for the 
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discrete seizure phase and ensured injection during SE progression. The data for this 

study suggested that efficacy loss in the therapeutic window may be a result of age as 

well as progression of the disease. 

The hypothesis for the overall study was that SE characteristics and diazepam 

efficacy are modulated during post-juvenile brain development. In addition, the postnatal 

age was a better representation of post-juvenile developmental stages than body weight. 

The data supported this hypothesis through several observations. Behavioral severity 

correlated directly with age of the animal. Seizure patterns did not alter in severity 

during SE progression; rather, severity in SE was a function of developmental age. A 

third observation was that SE induced loss of drug efficacy was related to age. 

Furthermore, many of the observed changes in seizure characteristics occurred in animal 

ages that were close in bodyweight. The following chapters that support our observation 

are companion papers (A, B), and a brief comn~unication being sent for publication. The 

first paper, "Post-Juvenile Brain Development Modulates Seizure Characteristics in the 

Rat Pilocarpine Model: Discrete Seizure Phase", is being sent to Epilepsia. The second 

paper, "Post-Juvenile Brain Development Modulates Seizure Characteristics in the Rat 

Pilocarpine Model: Status Epilepticus Phase", is being sent to Epilepsia. The third paper; 

which is a brief communication, "Status Epilepticus-Induced Loss of Diazepam Efficacy 

is Age Dependent in the Rat Pilocarpine-SE Model", is being sent to Epilepsy Research. 

Each paper is formatted according to the guidelines established by each specific journal. 
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POST-JUVENILE BRAIN DEVELOPMENT MODULATES 
SEIZURE CHARACTERISTICS IN THE RAT PILOCARPINE 

MODEL: DISCRETE SEIZURE PHASE 

ABSTRACT 

Purpose: This study utilized the rat-pilocarpine model of status epilepticus to 
characterize ictal activity during the acute discrete seizure phase in post-juvenile ages. 
Methods: Seizure activity was induced by pilocarpine injection (300 mglkg) in rats 
ranging in age from P30 to P90. Behavioral and electrographic activities were monitored 
by video EEG. Beliavioral observations were scored according to the scale of Racine. 
Electrographic activity was characterized for seizure profiles, time characteristics, and 
spike frequency measurements. Composite Spectral Analysis (CSA) and Quantitative 
Electroencephalogram analysis (qEEG) were performed using algoritlmic calculations 
from Insight, Insight I1 software (Persyst, Prescott, AZ). 
Results: Discrete seizures showed significant modulation of Racine scores, spike 
frequency, and power components. Additionally, seizure profiles transitioned from a 
predominate dreadnaught shape in P30-40 animals to a predominate cyclone shape in P90 
animals. Animal ages P50-P90 showed a significant correlation between Racine scores 
and spike frequency 
Conclusions: Seizure chara~teristics are age dependent in the acute discrete seizure 
phase of SE during post-juvenile brain development. 
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INTRODUCTION 

Status epilepticus is a neurological emergency defined as continuous seizure 

activity for 30 minutes or longer without self termination [3, 41. Approximately 150,000 

cases of SE are reported each year in the United States, with many resulting in mortality 

[5, 6, 8, 5 11. In addition, individuals that survive SE usually suffer long-term cognitive 

deficits and motor dysfunction [13]. Multiple studies have suggested that SE onset 

changes by developmental age [5, 7, 19,21,28, 52, 531. Therefore, a systematic 

characterization of the acute discrete seizure phase is necessary to understand changes 

prior to status epilepticus onset. 

Previous developmental investigations of SE have focused on PI-30 (juvenile) 

animals [34, 38, 39, 541. During this age range, rats develop in several stages of brain 

growth [49, 50, 551. However, it is widely accepted that rats continue to develop and 

finalize brain circuitry during post-juvenile (P30-80) ages until adulthood (P90) [40, 50, 

561. Similarly, the human brain finalizes neural circuitry development during post- 

juvenile ages [46,47]. Although this age range has been investigated as a group [19,21, 

25, 571 , there has been no systematic characterization of the electrographic and 

behavioral seizure characteristics during post-juvenile brain development. Furthermore, 

studies utilizing the pilocarpine and other models of SE have reported a high degree of 

variability in multiple parameters including death rate and SE induction probability [19, 

211. In many investigations, body weight is used as an estimator for age [22-24, 581; 

however, brain development does not parallel body growth or weight [46-501. 
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Therefore, characterization of the effect of developmental age on seizure characteristics is 

warranted. 

This study examined seizure activity during the acute discrete seizure phase in the 

pilocarpine-SE model. Animal ages P30 through P90 were utilized to approximate the 

human brain's post-juvenile aging process. The results from this study identified 

multiple characteristics that changed during post-juvenile ages. Understanding how post- 

juvenile brain development affects seizure characteristics may provide information to 

decrease the variability for this model. 
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MATERIALS AND METHODS 

Induction of Status Epilepticus 

Male Wistar rats (P30-P90) were purchased from Harlan Laboratories 

(Indianapolis, IN, USA), housed with food and water provided ad libutum, with lighting 

on a 12 hour on/off cycle. All animal use procedures were in strict accordance with the 

National Institutes of Health Guide for the Care and Use of Laboratory Animals and were 

approved by the Virginia Commonwealth University Institutional Animal Care and Use 

Committee. 

Five days prior to SE induction, four surface electrodes were surgically implanted 

into the skull of male Wistar rats under ketamine (125 mglkg i.p.)-xylazine (1 mglkg) 

anesthesia. Two frontal electrodes (Fl and F2) were implanted over the frontal cortex 

(3.5 mm anterior to bregma; *2.5 mm left or right of sagittal suture). Two posterior 

electrodes (P1 and P2) were implanted over parietal cortex and hippocanlpus (2.0 rnrn 

posterior to bregma, *2.5 mm left or right of sagittal suture). Electrodes were secured 

with dental acrylic, and the animals were allowed to recover for at least five days. Four 

separate bipolar channels were recorded with a montage of F 1 -F2, F1 -P 1, F2-P2, and P1- 

P2. On the day of the experiment, animals were connected via headset to video-EEG 

machines (BMSI 5000, Nicolet), and baseline recordings were obtained. Using a 

sampling rate of 420 Hz per channel, a low pass frequency of 100 Hz, a high pass 

frequency of 2 Hz, and notch filter set at 60 Hz; animals were monitored for behavioral 

and EEG activities. To induce seizure activity, pilocarpine (300 mglkg i.p.), a muscarinic 

agonist, was injected. Methylscopolamine, a muscarinic antagonist that does not cross 

the blood brain barrier, was administered i.p. (1 mglkg) 30 minutes prior to pilocarpine 
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injection to reduce peripheral affects[21, 25, 571. All materials were reagent grade and 

purchased from Sigma Chemical Company (St. Louis, MO, USA) unless otherwise 

stated. 

Behavior observations 

Fifty-six animals were used in this study of the acute discrete seizure phase of 

status epilepticus. In the discrete seizure phase, rats were assigned a score based on the 

scale of Racine [59]. Scores ranged from 0-5 according to movements and behavior. 0= 

normal behavior, wet dog shakes, arrest; I= mouth and facial movements; 2= head 

nodding, mouth and facial movements; 3= forelimb clonus ; 4= rearing with forelimb 

clonus; 5= rearing and falling [59]. The maximum score for each animal was recorded 

and averaged for each age group. Postnatal-90-day old animals were defined as adults 

[2 1,34, 601 and were used as a standard for comparison in the present study. 

Visual and Electrographic analysis: 

During each discrete seizure, spike frequency was determined using Insight I1 and 

averaged for each animal for the duration of the discrete seizure. Filial results for all 

discrete seizures were then averaged for each postnatal age giving the overall average for 

the age group. Maximum and minimum spike frequencies for each discrete seizure per 

animal within each age group were also obtained. The number of discrete seizures was 

averaged per age group and an average duration for each discrete seizure was calculated. 

The total time in seizure activity was recorded for each discrete seizure phase along with 

average latency time to SE for each postnatal age. 
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Spectral Analvsis 

During the acute discrete seizure phase, Composite Spectral Analysis (CSA) was 

created ill four different sections for each discrete seizure: pre-ictal baseline section (Bl), 

a build up or seizure onset (SO), a seizure body or primary ictal event (SB), and seizure 

termination (ST). Visual inspection of the composite was made in four frequency bands: 

delta (0.5-3.99 Hz), theta (4.0-7.99 Hz), alpha (8.0-12.99 Hz), and beta 1 (13.0-20.99 Hz) 

[41, 421. The major contributory frequencies from discrete seizures were analyzed 

between 2.5-50.0 pV. Frequency amplitude of 2.5 pV or lower was considered baseline; 

minor peaks were observed between 2.5 pV through 15.0 pV; and major peaks were 

observed at 15 pV or higher. One epoch of twelve seconds for each section per discrete 

seizure was used for quantitative EEG (qEEG) analysis and was completed in five 

frequency bands: delta (0.50-3.99 Hz), theta (4.0-7.99 Hz), alpha (8.0-1 2.99 Hz), beta-1 

(1 3.0-20.99 Hz), beta-2 (21 -44.0 Hz) [41, 421. Absolute values were obtained for each 

band and relative delta contribution (% of total power) was derived as described [41,42]. 

A one-twofold increase in absolute values from baseline defined seizure onset (SO) and a 

re t~~rn  to baseline defined seizure termination (ST) for absolute qEEG values. The 

software used for spectral analysis (Insight, Insight 11) was purchased from Persyst 

Corporation (Prescott, AZ). 

Statistical Analysis 

Single parametric con~parisons were made with paired Students t test. Multiple 

comparisons were tested with one-way analysis of variance (ANOVA) with Tukey post 

hoc analysis to reduce type-1 errors. Nonparametric comparisons were performed using 

Kruskal-Wallis test with Dunns multiple comparison, and correlations were determined 
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by Spearman's Rank correlation and linear regression analysis. All statistics were 

completed using Graph Pad Prism 4.0 for windows (Graph Pad Software, San Diego CA, 

USA, www.araphpad.com). Data are expressed as mean k standard error of the mean. 
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RESULTS 

Behavioral Characteristics: 

There was a significant overall effect of postnatal age on Racine behavioral score 

(p<0.001 by Kruskal-Wallis, Kruskal-Wallis statistic=31.33, n=56 animals). After Dunns 

multiple comparisons between groups were completed, animals were compared against 

P90 animals' behavioral score. The P90 (adult) animal average maximum Racine 

behavioral score was 4.44h0.24 (Figure 2, n=9 animals). Dunns multiple comparison test 

showed that postnatal-30 and 40-day old animals (pubescent) had Racine behavioral 

scores similar to P90 animal behavioral scores (p>0.05, Figure 2, n=7 animals, P30-40, 

respectively). Unlike P90 or P30-40 animals, P50 (early adolescent) animals displayed a 

significantly reduced seizure severity when assessed by behavioral methods. Postnatal- 

50-day animals displayed the lowest Racine score of 2.1 0*0.27 out of all age groups. 

This was significantly lower than P90 animals (p<0.001, Kruskal-Wallis with Dunns 

multiple comparison test, n= 10 animals). In addition, the P50 animals were significantly 

lower than either P30 or P40 animals (p<0.01, p<0.05, Kruskal-Wallis, P30-40 

respectively). Postnatal-60 and 70-day animals (mid-adolescent) displayed a similar 

reduced behavioral severity (p<0.05, Kruskal-Wallis with Dunns multiple comparison, 

n=6 animals, n=11 animals, P60-70 respectively). After P60-70 animals, behavioral 

seizure severity scores increased in P80 animals, however; these were not significantly 

lower when compared to P90 animals (p0.05,  Kruskal-Wallis, with Dunns multiple 

comparison). 
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To determine if developmental age had an association with behavioral severity, 

Racine scores were correlated with post-juvenile age. When all age groups were 

included, no significant correlation existed between post-juvenile age and behavioral 

severity (r=O. 10, p>0.05, Spearman's rank). However, when the P30-40 age group was 

removed a significant correlation was observed between P50 ages through P90 (r=1.00, 

p<O.O 1, Spearman's rank). The data suggest that late stages of brain development (P50- 

80) affect seizure severity when characterized by behavioral measures. 

Visual and Frequency Analysis of EEG 

Time characteristics were observed to quantify if the average time frame for 

seizure characteristics changed with age in the pilocarpine-SE model. The duration of the 

discrete seizure phase for P90 animals averaged 14.33 h 3.00 min (Table 1) with 

approximately 3 discrete seizures per period. Postnatal-90-day animals averaged 50.36* 

4.73 sec per seizure (Table 1, -149 seclphase). This seizure duration of 50.36* 4.73 sec 

and 3 discrete seizures per period resulted in P90 animals spending approximately 

22.58*3.97% of the 14.33* 3.00 min discrete seizure phase in ictal activity (Figure 4). 

There was a significant age dependent effect on the duration of discrete seizures 

for all animals (F=4.25, df=54, p<0.0 1, by one way ANOVA, n=56 animals). After 

Tukey post hoc analysis, however; no significant difference exists when all separate age 

groups are compared to P90 animals (p>0.05, one way ANOVA). The average latency 

period to SE from seizure onset for all animals did not have a significant age dependent 

effect (F=1.29, df=55, p>0.05, by one way ANOVA, n=56 animals). Conversely, there 

was a significant overall effect of postnatal age on percent time in ictal activity during 

post-juvenile ages (F=2.29, df=55, p<0.05, by one way ANOVA, n=56 animals). For 
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individual age groups after Tukey post hoc analysis, postnatal-50-day animals spent a 

significantly greater percent of time in ictal activity, 49.98h10.47%, than P90 animals 

(Figure 4, p<0.05, one-way ANOVA with Tukey post hoc analysis). This peak resulted 

from a trend of increasing time spent in ictal activity that originated in P30 animals and 

continued in P40 animals (Figure 4). This was not significant when compared to P90 

animals (p>0.05, P30-40, one way ANOVA, n=7 animals respectively). A decline of 

time in ictal activity was observed in P60 animals and remained lower than P50 animal 

time in ictal activity for P70-80 animals (Figure 4). The data suggest that younger 

animals (P30-50) spend more overall time in seizures than older animals (P60-80, Figure 

4). 

To determine if seizure severity is age modulated, spike frequency was recorded 

for each discrete seizure in all age groups. One way analysis of variance showed a 

significant effect of postnatal age on spike frequency (F=10.49, df=54, p<0.001, by one 

way ANOVA, n=56 animals). After Tukey post hoc analysis spike frequencies were 

compared against P90 animals. The average spike frequency for P90 animal discrete 

seizures was 7.43h0.32 Hz, which was the highest average in any of the animal age 

groups studied (Table 1). Postnatal-30,40, and 50-day animals (n=7, 7, 10 animals, 

respectively) displayed the lowest average spike frequency per discrete seizure studied 

and were significantly lower than P90 animal spike frequency values (Figure 3, P30: 

p<0.001; P40-50 p<0.01, one-way ANOVA with Tukey post hoc analysis). This began a 

progression of increasing values until P90 levels were reached (Figure 3). Spike 

frequency values for P50 animals provided a transition point through postnatal ages 

averaging 5.83k0.42 Hz per discrete seizure, which was significantly higher than P30 
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animals (Figure 3, p<0.01, one-way ANOVA with Tukey post hoc analysis, n=10 

animals) but these values were significantly lower than those of P90 animals (p<0.01, 

one-way ANOVA with Tukey post hoc analysis). 

To test if an age dependent correlation for severity exists, linear regression 

analysis was performed between spike frequency averages for each age and postnatal age. 

Results showed a significant correlation exists between spike frequency and post natal 

age (r2=0.90, p<0.001). The data suggest that as animals' age during post-juvenile brain 

development, seizure severity increases. 

Spectral Analysis of Seizure Severity 

Significant slowing of the EEG was observed as an increase in amplitude in the 

lower frequency bands (Figure 1C). Major frequencies were identified in the delta (0.50- 

3.99 Hz), theta (4.00-7.99 Hz), and alpha band (8.00- 12.99 Hz). It appeared that P90 

animals had an increased delta contribution when compared to the other age groups 

examined. 

To quantify the contribution of each frequency band to total ictal activity, qEEG 

analysis was performed using Insight I1 software. Five frequency bands were measured 

for absolute and relative power as described (see Materials and Methods). Increases over 

the average baseline qEEG values were used as a standard for analysis. Overt ictal 

activity was associated with a significant, five-tenfold increase over baseline values in the 

SB section for absolute delta power in all animals (all P30-90, p<0.01, paired Students t 

test, n=56 animals). The average absolute delta power for the seizure body section for all 

animals was 1 8.33h 1.33 p v 2  (st.dev 6.29) and 3.081-0.30 p v 2  (st. dev 1.80) for baseline 

values. 
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Relative delta contribution has been utilized in previous studies to compare ictal 

severity [41, 421. To further quantify age dependent modulation of seizure severity, 

increases in the seizure body section over baseline relative delta values was calculated for 

all ages and age was found to have significant effect on relative delta power increase 

(F=7.76, df=48, p<0.001, by one-way ANOVA, n=56 animals). After Tukey post hoc 

analysis delta increases for each animal group were compared to the P90 animal average 

of 18.47%2.38% (increased delta contribution, n=9 animals). Although postnatal-30-day 

animals did display a similar increase in relative delta values of 17.08*1.0% (n=7 

animals), postnatal-40-day animals began a significant decline in relative delta power 

increase in relation to P90 animals (7.16*2.05%, p<0.05, one-way ANOVA with Tukey 

post hoc analysis, n=7animals). Postnatal-50-day animals continued this decline in 

relative delta values with the lowest percentage increase of 1.96%2.85% (n=10 animals) 

out of all age groups. This small increase was the greatest difference in relative delta 

percentage increases in this study when compared to P90 animal increases (p<0.001, one- 

way ANOVA with Tukey post hoc analysis). Furthermore, some calculated percentages 

were lower than baseline values. A sharp return to higher relative delta increases, that 

were similar to P90 animal values, was observed for P60 animals (16.29*1.50%, Figure 

5, p>0.05, One way ANOVA). This observation of similar values (-16-18%) remained 

for the P70-80 age group relative delta increase (Figure 5). 

To determine the relationship between relative delta contribution over baseline 

values and behavior severity, values from each age group were compared. While a 

similar age-dependent change in both of these parameters was observed, a significant 

correlation did not exist between these two variables (r=0.71, pB0.05, Spearman's rank). 
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Seizure severity most likely does not explain the observed age dependent changes in 

behavioral severity. 
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DISCUSSION 

The pilocarpine-SE model was used to characterize events related to the discrete 

seizure phase of status epilepticus through post-juvenile developmental ages (P30-P80). 

This model was chosen due to its approximation of the human condition and the ability to 

study developmental influence on seizure characteristics. The data demonstrated that 

seizure profiles, Racine behavior scores, spike frequency recordings, and spectral 

analysis changed in relation to post-juvenile developmental ages (P30-P90). The results 

demonstrated that developmental age modulates specific seizure characteristics. Since 

many laboratories report animal weight ranges and not specific postnatal ages, the present 

study may provide information to reduce inter-study variability with this model. 

Previous investigations have shown seizure sensitivity is age modulated in 

immature animals [2, 19, 21, 36, 40, 611; however, no systematic characterization of the 

discrete seizure phase has been conducted. In our study, P30-40 aged animals displayed 

significant pathology when measured by behavioral standards. These observations were 

confounded, however; when measuring spike frequency, percent time in ictal activity, 

and seizure profiles. Within the P30-40 age group there exist multiple possibilities that 

may explain these disparate observations. This age group may be heavily influenced by 

pubescent hormones, which may modulate seizure severity and activity [38, 50, 62-64]. 

In addition, animals in this age group experience a final rapid growth stage of dendritic 

connections [50]. Following this stage the brain systematically culls dendritic density 

and interneuron number until P90 levels are reached [56, 65, 661. Thus, this stage may 

represent a critical stage of increased seizure sensitivity. An earlier study using perforant 

path stimulation displayed an increase in seizure development with similar aged animals 
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(P35) [67, 681. However, despite the increased sensitivity, the immature P30-40 brain 

displayed decreased spike frequency. This suggests that the P30-40 (peri-pubescent) 

brain may not have the completed neural circuitry to reduce seizure severity when 

compared to P90 (adult) animals. 

Out of the many characteristics studied, P50 (adolescence) was the earliest stage 

to clearly define late stage developmental influence on seizure characteristics. Large 

differences in behavior, electrographic, and power characteristics between P50 and P90 

animals were observed. The data suggest that as animals' age during P50-80 

development, seizure severity increases. To complement these observations, a linear 

regression between Racine scores and discrete seizure spike frequency in ages 

corresponding with post-juvenile brain development was calculated. When compared 

through all postnatal a significant correlation did not exist (r2=0.03, p=0.70, linear 

regression, n=56 animals). However, when this study separated away the P30-40 age 

group a significant correlation was observed between P50 through P90 animal group 

(P50-90) with regard to Racine scores and spike frequency values (r2=0.93, p<0.01, 

linear regression, n=42 animals). These correlations further suggest that seizure 

characteristics are developmentally modulated through the age range P50-80: ages 

corresponding to late stage brain development. 

Previous experiments using the kindling model related brain status and seizure 

severity during ictal activity to scores (1-5) for certain behavior [69]. These experiments 

revealed that inducing seizures through the amygdala produced scores of 1-3 and a limbic 

status of ictal activity (less severe) [69]. Scores of 4-5 exhibited an extra-limbic 

progression to a generalized full brain status (more severe)[69]. Given that a Racine 
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score can determine discrete seizure severity, a score of 3 is the critical value in this 

ranking system and needs to be examined. Age modulation was observed between P80 

and P90 animals. Postnatal-80-day animals averaged 3.3 as a maximum score with four 

animals having a maximum score of 3 and two animals having a maximum score of 4. 

Postnatal-90-day animals had one animal with a maximum score of 3 and eight animals 

above 4. These observations suggest that at the P80 age animals transitioned between the 

limbic (less severe) and extra-limbic generalized (more severe) seizure status [69]. 

Conversely, the majority of P90 animals attained the generalized seizure. These two age 

ranges averaged a 4-5% change in body weight (P80:364%8.96 g vs P90:383.39%2.95 g) 

yet displayed disparate characteristics for severity and localizaiion of seizures. The data 

demonstrate significant modulation of seizure severity during late adolescent animal 

aging. The modulation may explain apparently disparate findings and high variability 

across multiple laboratories using this model. 

It is well known that the EEG provides a summation of the brain's electrical 

activity [IS]. Electrodes will receive most signals generated by excitatory postsynaptic 

potentials (EPSP) and some action potentials from cortical neurons [IS]. It is speculated 

that the thalamus is the originator of EEG rhythmic oscillations that activate cortical 

neuron firing, which are represented as a slowing EEG [IS]. This study found a 

progression through postnatal ages of increasing spike activity. Out of this progression, 

significant differences between P30-P40, P50, and P90 animals were observed allowing 

for the identification of discrete seizure characteristics which change during post-juvenile 

ages. 
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There were five principal frequency bands used for power analysis in our 

investigation as described (see Materials and Methods). The delta band (0.50-3.99 Hz) 

power has been utilized as an indicator of neuropathology; representing brain lesions, 

cerebral damage, edema, and white matter destruction in animal experiments [70, 7 11. 

Results from this study demonstrated that relative delta power did change during 

developmental ages (P40, P50). When tested for significance, the relative delta 

component for P50 animals was the lowest value out of all postnatal age groups. Thus, 

like behavioral observations, P50 animals expressed less severe seizure activity when 

measured by delta power contribution. In addition, the subsequent increase in delta 

power suggests that developmental mechanisms occur in the late stages of brain 

development. These mechanisms may participate in the increased seizure severity 

observed in this model. 

Previous investigations have translated human years to animal ages through 

measurements of brain developnlent between humans, primates, and rats in terms of 

anatomical growth [56, 721. One such study established timelines suggesting early 

postnatal ages for rats were similar to the human pre-natal brain [72]. Other studies have 

suggested that postnatal 21 (P21) rats are analogous to five year old humans [56]. Our 

study utilized the pilocarpine-SE model to study post-juvenile brain development and 

anthropomorphically translate animal ages. We estimate that P30-40 animals were 

analogous to a 1 1 - 14 year old human due to the hormonal surges preceding and during 

this age range [63,64]. Several studies have also defined this age range as pubescent 

[73-751. This study estimated P50 as a 15-1 6 year old human due to the continuing 

transitional point in the results through out this study and the previous definition of 
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adolescence in P50 animals [62,63, 731. Postnatal-60-day animals were considered a 17- 

18 year old human due to results which were similar to both P50 and P60 animals. 

Postnatal-70 and 80-day animals were estimated to be analogous to a 19-24 year human 

due to their results closely approximating P90 rats. Postnatal-90-day rats were 

considered fully developed and resembling a 25-year-old human. The age ranges 

identified are a best-guess anthropomorphic estimate of late stage brain development. 

This study investigated seizure characteristics in the discrete seizure phase in the 

pilocarpine-SE model and how they change during post-juvenile brain development. 

Many characteristics during the acute discrete seizure phase displayed developmental 

n~odulation such as seizure profiles, Racine scores, power analysis, and spike frequency. 

These results establish that age may explain the developmental variability in 

characteristics for this model. Future studies will determine what characteristics change 

during the chronic SE phase of the pilocarpine -SE model and if the variability reported 

in this model are age-dependent. 
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Figure 1: Post-juvenile Brain Development Modulates Seizure Characteristics in the 

Discrete Seizure Phase Preceding SE. 

Typical seizure profiles (left) and frequency distributions (right) observed in postnatal 

30-day-old (A), postnatal 50-day-old (B) and postnatal 90-day-old rats (C). Age did not 

affect the total number of seizures observed or the duration of seizure activity. Seizure 

length averaged between 30 and 90 seconds and was characterized by a ten to fifteen-fold 

increase in average absolute delta band power (0.50-3.99 Hz). Seizure (SO) activity 

started with a gradual slowing of the EEG that progressed to high amplitude, increased 

slowing of the seizure body (SB). Postnatal-90-day animals (C) displayed slowing in the 

seizure body section (SB). Postnatal-30 and 40-day animals (A) had a similar slowing 

profile when compared to P90 animals. Postnatal-50-day animals (B) displayed reduced 

signal amplitude when compared to P30 and P50 animals. Seizure termination (ST) for 

all animals either ended abruptly (B, C) or faded to baseline (A) (ternination). In 

addition, P30-40 animals had a majority of seizure terminations that faded to baseline 

resulting in a dreadnaught appearance. Postnatal-50-day animals through P90 animals 

displayed abruptly ending seizure terminations which gave a cyclone shape seizure 

appearance. 
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Figure 1 
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Table 1: Time and Frequency characteristics. Data are expressed as mean k 

standard error of the mean. 

Table 2: Absolute power values for discrete seizures (SB) in each post natal age. 

Data are expressed as meankstandard error of the mean. 

1 Delta pv2 Theta pv2 1 Alpha pv2 1 Beta 1 pv2 1 Beta 2 pv2 1 

Avg Seizure 
Duration (sec) 

52.40k9.17 

79.91k9.17 

57.93k8.47 

69.1 Ok10.14 

33.54k2.19 

51.44k8.52 

50.36k4.73 

P30 

P40 

P50 

P60 

P70 

P80 

P90 

Min fceq 
perseizure 
(Hz) 

3.35k0.22 

4.74k0.26 

4.99k0.49 

5.21 k0.46 

5.87k0.16 

5.93k0.20 

6.73k0.28 

N 

7 

7 

10 

6 

11 

6 

9 

Max freq 
perseizure 
(Hz) 

4.79k0.58 

5.98k0.51 

6.59k0.31 

7.17k0.35 

7.29k0.33 

7.1 1 k0.27 

8.32k0.48 

Avg freq per 
seizure 
(Hz) 

3.96k0.35 

5.41k0.34 

5.83k0.42 

6.27k0.23 

6.55k0.23 

6.51 k0.21 

7.43k0.32 

Average Discrete 
Seizure Period 
(minutes) 

12.0k1.76 

11.33k1.75 

8.88k2.00 

16.41 +I .75 

8.38k1.74 

9.68k2.00 

14.33k3.00 
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Figure 2: Behavioral Observations Reveal Age Dependent Seizure Severity 

Animals were observed for behavior during discrete seizures and assigned a score based 

on the scale of Racine (see Materials and Methods) [69]. Scores of 1-3 distinguished a 

less severe limbic seizure and scores of 4-5 a more severe generalized seizure [69]. Late 

stage developmental modulation of seizure severity was observed in P50 animals having 

the lowest average score and significantly lower than P90 animals (2.10f 0.27, p<0.001, 

hskal-Wall is  with Dunns multiple comparison). Postnatal-60-day animals were also 

significantly lower than P90 animal behavioral severity scores (p<0.0 1, Kruskal-Wallis 

with Dunns multiple comparison). * denotes statistical significance. * * *=p C0.00 1, 

**=p<0.01,*= p<0.05 when compared to P90 animals. 
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Postnatal day 

Figure 2: Racine behavioral severity scores for each postnatal age. Calculated 

means are expressed has columns and standard error of the mean +1 are expressed 

as error bars. 
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Figure 3: Spike Frequency Recordings Display Significant Differences during Post- 

Juvenile Brain Development. 

Spike frequency was recorded using Insight software (Persyt, Prescott, AZ), and all 

seizures were averaged for each animal. Age was found to have a significant effect on 

data for all age groups (F=10.49, df=54, p<0.001, by one way ANOVA, n=56 animals). 

After Tukey post hoc analysis postnatal-90-day animals displayed significantly higher 

frequency recordings than P30-40 and P50 animals (P30: p<0.00 1 ; p<40-P50: p<0.01, 

one-way ANOVA with Tukey post hoc analysis). Additionally, spike frequency values 

for P50 animals were significantly higher than P30 animals (p<0.01 P50 vs P30, one-way 

ANOVA with Tukey post hoc analysis).* denotes statistical significance. ***=p<0.001, 

**=p<0.01 when compared to P90 animals. 
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Postnatal day 

Figure 3: Spike frequency averages for discrete seizures in each postnatal age. 

Calculated means are expressed as columns and standard error of the mean +1 are 

expressed as error bars. 
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Figure 4: Postnatal-50-day Animals Spend Significantly More Time in Ictal Activity 

than P90 Animals. 

For time characteristics, animals averaged 3.0 discrete seizures, with 30-90 seconds per 

seizure, and 11.50k1.50 minutes for the discrete seizure phase in this study (Table 1, 

n=56 animals). Percent time in ictal activity for P50 animals was significantly higher 

than P90 animal time in ictal activity during the discrete seizure period (49.98*10.47%, 

p<0.05, one-way ANOVA with Tukey post hoc analysis). This was the only age group 

significantly higher when compared to P90 animals in time characteristics. However; age 

did have an overall effect on percent time in ictal activity (F=2.29, df=55, p<0.05, by one 

way ANOVA, n=56 animals). * denotes statistical significance. *= p<0.05 when 

compared to P90 animals. 
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Postnatal day 

Figure 4: Time spent in seizure (ictal) activity for the duration of the discrete 

seizure period. Calculated mean are expressed as columns and standard error of 

the mean +1 are expressed as error bars. 
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Figure 5: Post-Juvenile Brain Development Modulates Relative Delta Power: 

Power estimates were completed in five bands: delta (0.50-3.99 Hz), theta (4.0-7.99 Hz), 

alpha (8.0-12.99 Hz), beta 1 (13-20.99 Hz), and beta 2 (21-44 Hz) [41,42]. Relative 

delta power (% total power) increases over baseline displayed significant changes 

through post-juvenile brain development. Age was found to have a statistically 

significant effect on relative delta increase (F=7.76, df=48, p<0.001, by one-way 

ANOVA, n=56 animals). Observations after Tukey post hoc analysis showed postnatal- 

30-day animals with relative delta percentage increases close to P90 animal percentage 

increases (17.08f 1.01%). The postnatal-40 day animal's relative delta power increase 

was significantly lower than postnatal-day-90 animal (7.16&2.04%, p<0.05, one-way 

ANOVA with Tukey post hoc analysis). Postnatal-50-day animals followed this with the 

lowest relative delta percent increase in the age groups studied (1.96+2.85%). This 

observatioii was significantly lower than postnatal-30, 60, and 90-day animals (P30, P90: 

p<0.00 1 ; P60: p<0.0 1, one-way ANOVA with Tukey post hoc analysis). Postnatal-60- 

day animals returned relative delta percentage increases to P90 levels where they 

remained for P70-80 animals. * denotes statistical significance. * * * =p<0.001, 

**=p<O.Ol,*=p<0.05 when compared to P90 animals. 
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Postnatal day 

Figure 5: Relative delta percentages for discrete seizures in each postnatal age. 

Calculated means are expressed as columns and standard error of the mean +1 are 

expressed as error bars. 
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POST-JUVENILE BRAIN DEVELOPMENT MODULATES 
SEIZURE CHARACTERISTICS IN THE RAT PILOCARPINE 

MODEL: STATUS EPILEPTICUS PHASE 

ABSTRACT 

Purpose: This investigation was conducted to identify seizure characteristics and 
severity of status epilepticus (SE) changes during post-juvenile brain development 
Methods: The rat pilocarpine model was used to fully characterize seizure patterns of 
status epilepticus (SE). SE was induced by pilocarpine (300 mglkg) in rats ranging in age 
from P30 (pubescent) and P90 (adult). Behavioral and electrographic activities were 
monitored by video EEG (BMSI 5000, Nicolet). Electrographic activity was 
characterized for early and late predictable patterns of SE: Early; merging seizures with 
waxing and waning (WIW), Fast and Slow spiking (FIS); Late; Early Continuous Spiking 
(EC), Continuous Fast Spiking wlpauses (FSP), and Late Continuous spiking (LC). 
Quantitative Electroencephalogram analysis (qEEG) was completed using algorithmic 
calculations from Insight, Insight I1 software (Persyst, Prescott, AZ). 
Results: Modulation of SE characteristics during post-juvenile brain development was 
observed for SE onset probability, time in seizure patterns, and spike frequency in seizure 
patterns. Relative delta values for P50 animal early and late SE patterns were 
significantly lower than P90 animal early and late SE seizure patterns. Significant 
correlations were established between onset probability and discrete seizure phase 
characteristics. 
Conclusions: Early and late SE characteristics are age dependent during post-juvenile 
brain development. Animal age is a better estimator for developmental stage than body 
weight. 
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INTRODUCTION 

Status epilepticus (SE) is a serious, life threatening, neurological emergency 

defined as continuous seizure activity lasting 30 minutes or longer [3,4]. The annual 

occurrence of SE is approximately 150,000 cases per year in the United States with 

young children and the elderly experiencing the greatest percentage of incidence [2,5-81. 

Many of these occurrences will result in mortality [2, 5-81. In addition, survivors suffer 

secondary effects including intellectual deficits, motor dysfunction, and the development 

of epilepsy [2, 5, 8, 131. Therefore, development of animal models of SE that closely 

represent the human condition are necessary to determine the molecular mechanisms that 

underlie this devastating disease. 

While several animal models are used to investigate SE, the pilocarpine model 

provides a good representation of the human condition with similar pathology and seizure 

patterns [I 0, 1 1, 191. One caveat exists concerning this animal model; a significant 

variability has been reported in results with respect to death rate and percent response in 

post-juvenile ages (P30-90) [I 9 , 2  1, 581. During this period of development, many 

laboratories approximate adolescence or adulthood in animals using body weight ranges 

even though there is a lack of synchrony between the brain and body weight during the 

maturation process in animals [46,47,49, 55, 76, 771. Brain development occurs in 

spurts during juvenile ages with adolescence finalizing circuitry development [46,47,49, 

55, 56, 76, 771. Thus, accurate characterization of SE using postnatal age is warranted. 

This study examined developmental modulation of SE characteristics in the rat 

pilocarpine model through post-juvenile and adult ages (P30-80, P90). The data 

demonstrated age modulation for the probability of SE onset, time in specific seizure 
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pattern, and spike frequency within seizure patterns. Significant differences were found 

in relative delta percentage contribution in the FIS, EC, and FSP seizure patterns within 

developmental stages during post-juvenile aging. The data suggest that age is a more 

accurate description for developmental stage than body weight, and SE characteristics 

were age modulated during post-juvenile brain development: The results may provide a 

model to elucidate the molecular and cellular events surrounding age dependence of SE 

onset and to reduce the variability in this model. 
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MATERIALS AND METHODS 

Induction of Status Epilepticus 

Male Wistar rats (P30-P90) were purchased from Harlan Laboratories 

(Indianapolis, IN, USA), housed with food and water provided ad libitum with lighting 

on a 12 hour onloff cycle. All animal use procedures were in strict accordance with the 

National Institutes of Health Guide for the Care and Use of Laboratory Animals and were 

approved by the Virginia Commonwealth University Institutional Animal Care and Use 

Committee. The software used for analysis (Insight, Insight 11) was purchased from 

Persyst Corporation (Prescott, AZ). 

Five days prior to SE induction four surface electrodes were implanted into the 

skull of male Wistar rats under ketamine (125 mglkg i.p.)-xylazine (1 mglkg) anesthesia. 

Two frontal electrodes (F1 and F2) were implanted over the frontal cortex (3.5 mni 

anterior to bregma, *2.5mm left or right of sagittal suture). Two posterior leads (P1 and 

P2) were implanted over parietal cortex and hippocanipus (2.0 mm posterior to bregma, 

*2.5mm left or right of sagittal suture). Electrodes were secured with dental acrylic and 

animals were allowed to recover for at least five days. Four separate bipolar channels 

were recorded with a montage of F 1 -F2, F 1 -P 1, F2-P2, and P 1 -P2. Electrodes for each 

animal were connected via headset to video-EEG machines (BMSI 5000, Nicolet), and 

baseline recordings obtained. EEG data were obtained using a sampling rate of 420 Hz 

per channel; low pass frequency set at 100 Hz, high pass frequency set at 2 Hz, and the 

notch filter set at 60 Hz. To induce seizure activity, pilocarpine (300 mglkg i.p. Sigma, 

St. Louis, Mo), a muscarinic agonist, was injected. Methylscopolamine, a muscarinic 

antagonist that does not cross the blood brain barrier, was administered i.p. (1 mg/kg) 30 
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minutes prior to pilocarpine injection to reduce peripheral affects [21,25, 571. Animals 

were monitored for electrographic activity throughout the procedure. Status epilepticus 

was broken down into two stages: early; with merging seizures that wax and wane (WIW, 

Figure 6B), and FastISlow spiking (FIS, Figure 6C); late, with early continuous fast 

spiking (EC, Figure 6D), continuous fast spiking with electro-decrimental pauses (flat 

periods) lasting 0.10-0.50 seconds (FSP, Figure 6E) [l  1, 121. The late continuous fast 

spiking pattern (LC, Figure 6F) was not observed in all age groups and was not graphed 

[lo]. Animals were measured for time in pattern, frequency per pattern, absolute, and 

relative power (% total power) [41,42] in the delta band (0.50-3.99 Hz) in each pattern. 

All materials were reagent grade and purchased from Sigma Chemical Company (St. 

Louis, MO, USA) unless otherwise stated. 

Electrographic analysis 

Beginning with the wax and wane seizure pattern, animals were monitored 

throughout the procedure for time and spike frequency in pattern using Insight software 

(Persyst Corporation) and EEG machines (BMSI 5000, Nicolet). Time recordings were 

calculated in total seconds and converted to percentiles for each pattern through all 

postnatal ages. Spike frequency was recorded in each pattern using 6-1 8 second epochs. 

During each pattern spike frequency was quantified by measuring an average for each 

channel for the duration of the epoch. Final results for all patterns were then averaged for 

each postnatal age. 

Quantitative EEG analysis (qEEG) was completed using Insight I1 software 

(Persyst Corporation, Prescott, AZ) and was recorded in the five patterns using 6-1 8 

second epochs (Figure I). One to twenty-five measurements were used to record each 
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pattern. Quantitative EEG (qEEG) analysis (absolute and delta) was measured and 

recorded for all four patterns in the delta frequency band (0.5-3.99 Hz) [42]. 

Statistical Analysis 

Multiple comparisons were completed using one-way analysis of variance 

(ANOVA) with Tukey post hoc analysis to reduce type-1 errors. Correlations were 

determined by Spearman's Rank correlation and linear regression analysis. Fisher's 

exact test was used to determine age dependence and completed through Vassar College: 

http//:faculty.vassar.edu/lowry/webtext.html [78]. One-way analysis of variance 

(ANOVA), Spearman's rank, and linear regression were completed using Graph Pad 

Prism 4.0 for windows (Graph Pad Software, San Diego, CA USA, www.graphpad.com). 
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RESULTS 

SE Onset Probabilitv and Age Correlations: 

One hundred thirty-three animals through seven postnatal ages were used in this 

study. Animals for each age group were observed for 60 minutes of SE, a standard 

duration for investigations of biochemical and pharmacological changes during SE [22- 

25,451. The induction of status epilepticus (SE) was defined as the onset of ictal activity 

without a clearly defined termination (Figure 6B). This activity initiated approximately 

1 1.0h1.5 minutes after the first discrete seizure in all animal age groups studied. 

Onset probability was calculated in all age groups studied with P90 animals 

having the highest probability of SE onset (P90: 96.0%, n=24 animals, Figure 7). 

Postnatal-30 and 40-day animals had a similar probability of SE onset (P30: 89.0%, n=19 

animals; P40: 77.0%, n=9 animals). However, P50 and P60 animals had the lowest 

percent of SE onset out of all animals studied (P50: 56.0%, n=30 animals; P60:72.0% 

P60, n=l 1 animals). Induction of SE for P70-80 animals was also lower when compared 

to P90 animals (P70: 86.0%, n=21 animals; P80: 84.0%, n=19 animals). 

Specific seizure characteristics during the acute discrete seizure phase were 

examined to determine their predictive value for SE probability. Behavioral severity of 

discrete seizures had a positive correlation with SE onset probability (Figure 2 and 7, r= 

0.96, p<0.01 Spearman's rank). However, other measures were confounded by the high 

SE onset probability observed in P30-40 animals. Postnatal-30 and 40-day animals had a 

higher onset probability than older animals (mid-late adolescence, P60-80) which 

confounded age dependent calculations for onset probability through all postnatal ages 

(P30-90) (Figure 7, P=0.17, P30-P90, Fishers exact, N=133 animals). In addition, when 
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onset probability and discrete seizure spike frequency averages for all postnatal ages 

(P30-P90) were plotted, no significant age correlation existed (r2=0.009, p=0.74, linear 

regression, P30-P90). 

Previous studies have suggested that P30-40 animals could have confounding 

factors [36-38, 50, 63, 731 that may interfere with age correlations in P30-40 animals. In 

addition, several laboratories utilize P60 to P90 animals for biocliemical analysis [21, 36, 

64,791. Therefore, the late developmental ages (P50 to P90) were characterized to 

determine any predictive characteristics within this age group. When P30-40 animals 

were omitted as a developmental stage, developmental age became a significant predictor 

for SE onset (p<0.05, P50-P80, Figure 7, Fishers exact, n= 81 animals). This suggests 

that a significant modulation of SE onset exists during late stage brain development. 

Post-Juvenile Brain Development Affects Early Patterns of SE: 

To determine how brain development affects SE severity, animals were grouped 

into 10 day incremental age groups (P30-90) and characterized for early and late SE 

seizure patterns previously described [lo, 1 11. Postnatal-90-day old rats have been 

defined through previous investigations as adults [21,34,60], and were used as a 

comparison for this study in each SE pattern with post-juvenile ages as described (see 

Materials and Methods). 

The waxlwane (WIW) pattern was identified by the merging of discrete seizures 

without a clearly defined self termination. Developmental age did not significantly affect 

the duration of the WIW seizure pattern for all age groups (P30-90) studied (F=0.94, 

df=46, p=0.47, by one-way ANOVA, Figure 8 A, n=47 animals). In P90 animals, seizure 

severity was also not affected by age. After Tukey post hoc analysis animals were 
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compared to P90 animal spike frequency averages. The average spike frequency for the 

P90 W/W seizure pattern was 6.1 1h0.48 Hz (n=8 animals). The wax period averaged 

6.64h0.46 Hz and the wane period averaged 5.21f0.47 Hz for P90 animals (Figure 9 A). 

The W/W pattern and individual wax or wane period spike frequency were similar to P90 

animal W/W spike frequency in all age groups studied (p>0.05, P30-P80; Figure 9 A). 

The end of the W/W seizure pattern was characterized by a noticeable progression 

into an alternating fast and slow (F/S) spiking pattern. The F/S pattern for P90 animals 

persisted for 16.1 3 f 4.97% of total time of observed SE (Figure 8 By n=8 animals). This 

pattern averaged two fast and slow cycles for P90 animals of which the majority was 

spent in the fast spiking period (14.1+3.24% fast, 4.12 f 1.73% slow). 

Age did have a significant effect with regard to time in pattern (F=5.7 1, df=46, 

p<0.001, by one way ANOVA, n=47 animals). Analyzing after Tukey post hoc analysis 

and then comparing against P90 animals, postnatal-30-day animals spent a significantly 

greater time in fast/slow spiking pattern when compared to P90 animals (53.41+5.57%, 

p<0.01, by one-way ANOVA with Tukey post hoc analysis, n=7 animals). The 

remaining age groups spent similar time as P90 animals in the F/S pattern with the same 

average number of cycles (p>0.05, Figure 8 B). Like the preceding waxlwane pattern, 

fast and slow periods cycled between high and low spike frequencies for P90 animals 

(8.73f 0.33 Hz, fast; 6.84k0.33 Hz, slow, n=8 animals). However; after Tukey post hoc 

analysis P30-80 animal age groups were similar to P90 animals (p>0.05, Figure 9 B). 

The data suggest that time and spike frequency characteristics in the early stages of SE 

(WIW, F/S) [ l  11 minimally changed during ages corresponding to post-juvenile brain 
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development. However, the percent time an animal showed in the early seizure patterns 

decreased with increasing age. 

Post-Juvenile Brain Development Modulates Late Stages of SE: 

The later patterns of SE [lo] (EC,FSP) constituted the majority of time spent 

during the observed time in SE for all animals. Early Continuous (EC, Figure 6 D) was 

identified as a pattern absent of FIS spiking revolutions. This pattern had a noticeable 

increase in amplitude from the FIS pattern (Figure 6 E) and age did have a significant 

effect on this pattern (F=4.77, df=47, p<0.001, by one way ANOVA, n=48 animals). 

Postnatal-90-day animals spent 16.0+4.52% of observed SE time in the EC pattern (n=8 

animals). Similar to P90 animals, postnatal-30-day animals spent 24.40f 7.36% of 

observed time in SE in the EC pattern (p>0.05, Figure 8 C, n=7 animals). However, P40 

animals spent a significantly greater time in EC than P90 animals (42.00+4.38%, p<0.05, 

one-way ANOVA with Tukey post hoc analysis, n=7 animals). Postnatal-50-day 

animals were like P90 animals with 35.60k8.10 % (n=8 animals) of observed SE time in 

EC and started a decreasing trend which continued in P60 and P70-80 animals (Figure 8 

B). Postnatal-30 and 40-day animals spent more of the observed time in the late stage SE 

pattern of EC when compared to P50-P80 and P90 animals. 

The EC pattern had the highest spike frequency recorded for P90 animals during 

the observed time in SE (9.07f0.54 Hz). Postnatal-30 and 40-day animal spike 

frequency in the EC pattern was not significantly different than P90 animal spike 

frequency; however it did begin a trend of increasing spike frequencies (Figure 9 C). 

Spike frequency averaged 9.02f 0.93 HZ for P50 animals in the EC pattern and remained 

high in late developing animals P60-80 and P90 animals (Figure 9 C). For P50-80 and 
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P90 animals, spike frequency in the EC pattern was consistently 2-5 Hz higher than P30- 

40 animals in the same pattern. 

The fast spiking wlpauses pattern (FSP, Figure 6 E) was characterized as a pattern 

of high amplitude and frequency with intermittent electro-decrimental pauses (flat 

periods) lasting 0.10-0.50 seconds. For all age groups, there were significant differences 

between groups in the FSP pattern in relation to time in pattern (F=7.87, df=47, p<0.001, 

by one way ANOVA, n=48 animals). Tukey post hoc analysis was used to compare 

groups to P90 animal percentages. Postnatal-90-day animals spent the majority of their 

time during the observed period of SE in the FSP pattern (57.34f 5.09%, n=9 animals). 

Postnatal-30-day animals spent a significantly lower time of 17.38*4.49 in this pattern 

when compared to P90 animals (p<0.01, one way ANOVA, n=7 animals). In addition, 

postnatal-50-day animals spent 23.60f 8.55% of observed SE time in the FSP pattern 

(Figure 8 D, n=8 animals). This was significantly lower than P90 animal time in the FSP 

pattern (p<0.01, one-way ANOVA, n=8 animals). However; P50 animals started a trend 

of increasing time spent in the FSP during late stage brain development. Postnatal-60- 

day animals continued this trend of increasing time in the FSP pattern were it remained 

near to P70-80 animals (43.83f 5.18%, n=6 animals). 

Age was found to have a significant effect on spike frequency in the FSP pattern 

(F=50.03, df=48, p<0.001, by one way ANOVA, n=49 animals). Using Tukey post hoc 

analysis, animals were compared to P90 animal values. Spike frequency for P90 animals 

averaged 8.89f 0.3 1 Hz for the FSP seizure pattern (Figure 9 D, n=8 animals). Postnatal- 

30 and 40-day animals did measure significantly lower spike frequencies in the FSP 

pattern when compared to P90 animals (Figure 9 D, P30: p<0.001; P40: p<0.01, one-way 
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ANOVA with Tukey post hoc analysis, n=7 animals respectively). Postnatal-50-day 

animals recorded a sigilificantly higher spike frequency when compared to P30-40 

animals (Figure 9 D, P30: p<0.001; P40: p<0.01, one-way ANOVA with Tukey post hoc 

analysis, n=4 animals). Spike frequency for this pattern remained at a high level in P60- 

80 animals until P90 values were reached (Figure 9 D). The data suggest that late SE 

seizure pattern time and frequency characteristics change in relation to post-juvenile 

brain development. 

Spectral Analysis: 

To more thoroughly characterize seizure severity in SE over specific ages, 

spectral analysis of each seizure pattern was performed. Relative (% total power) delta 

power contribution was determined as described (see Materials and Methods). The delta 

band (0.5.00-3.99 Hz) [41,42] was selected due to its relation to severity and indication 

of neural pathology [70, 711. Postnatal-90-day animals displayed cycles of revolving 

intensity through the early patterns of observed status epilepticus. Wax periods had 

higher relative delta percentage values when compared to wane periods (44.09f 1.00% 

wax vs 43.80f2.8% wane, n= 4 animals). Fast and slow periods followed a similar 

pattern of revolving intensity for P90 animals (45.57f 1.66% fast vs 42.48+2.39% slow, 

n=4 animals). This resulted in an average relative delta power of 43.95f 1.38% for the 

W/W pattern and 43.27f 1.85% for the F/S pattern. In the latter patterns of SE, relative 

delta percentage for P90 animals were similar to the early patterns of observed SE (EC; 

42.94&2.16%: FSP; 41.70f 2.01, n=4 animals). The results show seizure severity is not 

related to type or progression of seizure patterns of SE. 
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To further assess severity in each pattern increases over baseline delta values were 

measured for each age group and compared against P90 animal values. Postnatal-30 

through 80-day animal age groups did not differentiate from P90 animals in the observed 

W/W pattern of SE for relative delta increases (F=0.75, df=78, p>0.05, by one way 

ANOVA, Figure 10 A, n=79 animals). Conversely, two age groups had a11 increase over 

delta baseline values in the F/S pattern (P50:9.93*1.89%, p<0.01; P80: 1 1.39*1.99 

p<0.05, one way ANOVA with Tukey post hoc analysis). The data suggest that age had 

a minimal impact on relative delta increases per pattern in the early stages of SE. 

For the late stages of SE, EC and FSP patterns, age had a significant effect for 

both patterns concerning relative delta increases (EC: F=14.92, df=65; FSP: F=15.85, 

df=70, p<0.00 1, by one way ANOVA, n=66 animals, n=7 1 animals, respectively). Using 

Tukey post hoc analysis, animals were then compared between groups. Postnatal-30-day 

animals did have significantly higher relative percentages than P50 animals in those 

patterns (Figure 10 C, D; p<0.001 EC and FSP, one-way ANOVA, n=14 animals, n=8 

animals, respectively). Postnatal-40-day animals were significantly higher than P50 in 

the EC pattern (p<0.001, one way ANOVA, n=14 animals). These percentages for P50- 

80 animal age groups remained lower than both P30-40 and P90 animal relative delta in 

the EC and FSP patterns (Figure 10 B-D). Postnatal-50-day animals had significantly 

lower relative delta percentage increases than P90 animals for both EC and FSP patterns 

(Figure 10 C, D; p<0.001, one-way ANOVA with Tukey post hoc analysis, n=8 animals, 

n=l1 animals). Postnatal-60-day animals continued with significantly lower percentages 

for the FSP patterns (Figure 10 D: p<0.001 respectively, one-way ANOVA with Tukey 

post hoc analysis, n=l 1 animals). In addition, P80 animals were significantly lower than 
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P90 animal relative delta increases in both the EC and FSP patterns (Figure 10 C, D: 

p<0.001, one-way ANOVA with Tukey post hoc analysis, n=7 animals, n=9 animals). 

The data suggest that seizure severity changes during post-juvenile brain development in 

the late stages of status epilepticus. 



www.manaraa.com

DISCUSSION 

The pilocarpine model was used to characterize SE progression during post- 

juvenile developmental ages (P30-80) and adulthood (P90) in rats. Electrographic 

analysis examined post-juvenile age dependent modulation of SE characteristics 

progressing through early and late stage SE patterns as previously described (see 

Materials and Methods) [lo, 1 11. Significant differences were observed in multiple SE 

characteristics as animals progressed from pubescence (P30) to adulthood (P90). These 

changes include spike frequency, time in seizure pattern, and severity observations in 

post-juvenile (P30-90) animals. Significant correlations existed between SE induction 

and Racine scores. The data demonstrate that seizure patterns and severity modulate 

during post-juvenile brain development in the pilocarpine-SE model. These findings 

show tliat accurate estimation of brain development is important to reduce inter-study 

variability in animal models of status epilepticus. 

Typically, animal body weight has been used to determine developmental age. 

However; weight change does not accurately approximate brain maturation from infancy 

to adulthood in animals [46,47,49, 551. There is a lack of steady synchronous growth 

between the brain and body weight during the maturation process [46,47,49, 5.51. The 

rat brain develops in stages of rapid growth until P30-35 with many neurotransmitter 

systems becoming functional [19, 38, 55, 801. After this initial period of rapid growth 

stages, it has been shown that the rat brain continues to change through postnatal ages 

P30-P80 [38, 56, 651. Specifically, there is a steady culling of neuron number, loss of 

synaptic density, and finalizing of neurotransmitter circuitry lasting until adulthood [56, 

661. Furthermore, between the P30-40 age range animals experience a rapid growth 
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stage, hormonal influences on GABAergic tone, and continued development of 

neurotransmitter systems [36,38,62-641. The lack of synchrony was evident in this 

study when analyzing results and weight of the animals studied. Postnatal-30-day animal 

body weight was the lowest out of all animals studied at 1 17.05*2.60 grams. From this 

age until P50 (279.43*6.13 grams) animals grew approximately 160 grams over a twenty 

day period. During this period many results were similar to P90 animals for both P30-40 

animal ages yet animals experienced >loo% change in bodyweight. Furthermore, these 

animal ages were an approximate 64-70% change in bodyweight when compared to P90 

animals. However; during the next 40 day growth period (P50-90) animals gained 

roughly 90-100 grams of bodyweight. This was less than half body weight of a P50 

animal and approximately 20-25% change in bodyweight when compared to P90 animals. 

During these ages many parameters were significantly different than P90 animals which 

suggest that body weight sl~ould not identify development. 

Similar to animals, humans continue to develop and finalize circuitry 

development during adolescence [76]. The size and weight of the human brain remains 

stable after growth spurts during 0-6 years of age until the age of 20, yet many internal 

changes occur during this maturation process [76]. The human adolescent brain increases 

myelination and white matter volume in a linear pattern [76]. The basal ganglia, which 

are involved in cognitive processing, have been shown to lose volume in the caudate 

nucleus during adolescence [76]. Neural connections are active during adolescent years 

along the left arcuate fasiculus that connects speech processing areas Wernicke's 

(reception) and Broca's (production) [76]. Furthermore, the density of pyramidal cell 

axons with GABAAa2 subunit, have been shown to decline in the monkey prefrontal 
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cortex from infancy through adolescence [76]. The GABAAa2 subunit has a higher 

affinity for GABA, higher efficacy, and fast activation times which may increase 

GABAergic tone [76]. It has also been shown that during late developmental ages the 

incidence of SE decreases in adolescence while the occurrence of schizophrenia and 

bipolar disorder increase [77]. In addition, humans enter and complete reasoning stages 

during adolescence leading to adulthood [46,47, 551. Therefore, postnatal age is a better 

estimator for developmental stages than animal bodyweight. 

Previous studies have established that onset of SE is age dependent in both the 

human condition and the rat pilocarpine model [19,21]. What have not been 

characterized are the possible predictors or causes of this relationship. The previous 

paper determined that post-juvenile age has a positive correlation with behavioral seizure 

severity within the acute discrete seizure phase. The data for this study demonstrated an 

age dependence in P50-80 animals and P90 animals with onset probability (p<0.05, 

n=105 animals, Fishers exact). This probability correlated directly with Racine 

behavioral seizure severity scores in the acute discrete seizure phase. This suggests 

behavioral severity in the acute discrete seizure phase may be a predictor for SE during 

late developmental stages. 

There have been separate studies Treiman et a1 and Handforth et a1 that have 

identified patterns in SE [9-111. The present investigation chose the 1995 

characterization due to the fact it was done primarily with animals. The 1990 

characterization was based mostly on human electroencephalograms. Furthermore, the 

observation that W/W and F/S periods had unique, revolving characteristics led to the full 

characterization of each period in these patterns through all ages. Spike frequencies for 
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certain patterns averaged close to values established in Handforth et a1 [ l  1, 121. In 

addition, the late continuous pattern for this study had significantly lower delta values 

when compared to earlier pattern values. This differentiated the EC pattern from the FSP 

pattern. Therefore, the detailed breakdown from Handforth et a1 [ l  1, 121 was a better 

vehicle to describe post-juvenile SE modulation. 

The 60 minute time band was chosen due to its relevance to previous 

investigations quantifying this time epoch for biochemical and pharmacological changes 

[21-251. Although SE was fully characterized, animals were not observed for the 

development of epileptogenesis, which has been shown to be variable in relation to the 

frequency of seizures and their severity. Future studies could investigate SE severity and 

pathology with the magnitude of seizures, existing correlations, and development of 

epileptogenesis after the initial insult of SE. 

This study completed a detailed characterization of the SE phase provided by the 

pilocarpine-SE model of status epilepticus. The data demonstrated significant 

modulation during late stage brain development concerning time in pattern, spike 

frequency, and seizure severity. Further studies will focus oil SE induced loss of drug 

efficacy, epileptogenesis, and whether the therapeutic window of SE is age dependent. 
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Figure 6: Typical Seizure Progression During Status Epilepticus 
Postnatal-90-day animals progress through specific seizure patterns as SE 

duration increases. (6A); a discrete seizure with displaying a gradual increased amplitude 

developing with overt ictal activity followed by an abrupt seizure termination (cyclone 

shape,). The discrete seizure phase typically begins 17.5 f 1.5 minutes after pilocarpine 

injection. Approximately 11.50k1.5 minutes after the first ictal activity discrete seizures 

merge without a clearly defined terminus, WIW, (6B) defining the onset of SE. This 

pattern lasted 5.50f 0.39% of the observed time in SE for the average animal. The end of 

WIW was indicated by a noticeable progression into cycles of fast and slow spiking (6C). 

The F/S pattern generally averaged 24.1Of 5.54% of the observed time in SE. The next 

pattern, early continuous (6D) was defined as high amplitude fast spiking with occasional 

electro-decrimental pauses (flat periods) absent slow spiking revolutions. This pattern 

lasted 21.22+5.05% for the average animal during the observed time in SE. Fast spiking 

wlpauses (6E) was characterized with periods of consistent electro-decrimental pausing 

separated with periods of fast spiking. This pattern persisted for the greatest amount of 

observed time in SE for the average animal (42.41f 7.21%). This was followed by a 

diminution of amplitude and intensity: the late continuous pattern (6F) lasting 

6.85k2.58% of observed time in SE. 
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Figure 6: Seizure patterns during the progression of status epilepticus. 
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Figure 7: Developmental Age Modulates Specific Seizure Characteristics During 

Status Epilepticus. 

Specific characteristics during the acute discrete seizure phase during ages 

corresponding to post-juvenile brain development may predict SE onset probability: a 

percent of animals that develop SE displayed a noticeable reduction at P50 (56.0%) and 

P60 ages (72.0%). This is contrasted by a higher percent for P30-40 and P90 animals 

obtaining SE (90.0% P30, 89.0% P40, 96.0% P90). A significant correlation exists with 

Racine scores and onset probability (r=0.85, p<0.05, Spearman's rank) suggesting 

severity may be linked to SE onset. Previous epidemiology data have shown that a 

higher incidence of SE in children and the elderly exists when compared to P50-60 ages 

[5, 71. (Statistical significance when compared against P90 animals is denoted by * . 

*=p<0.05, **=p<0.01, ***=p<0.001 when compared to P90 animals.) 
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Postnatal day 

Figure 7. Onset probability for each postnatal age group. Columns express final 

calculated percent of onset probability. 
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Figure 8: Developmental Age Modulated Progress into Late Seizure Patterns 

During Status Epilepticus Progression. 

Animals were characterized for time in the early (W/W, F/S) and late (EC, FSP,) 

patterns of SE previously described [lo, 111 in all postnatal ages. The W/W and F/S 

were broken down into single component patterns and number of cycles. For P90 

animals there were two wax and two wane cycles per pattern which combined for 

5.31+1.63% of observed SE time. Although P90 animals did average two slow periods 

per F/S pattern, the majority of this pattern was spent in fast spiking (14.1Of 3.24%, 2 

periods, Figure 8 B). The last two patterns, early continuous and fast spiking wlpauses, 

constituted the majority of observed time in SE. Postnatal-90-day animals spent 

16.00+4.52% in EC (8 C) and 57.34+5.09% of time in fast spiking wlpauses (8 D). The 

data demonstrates that younger animals spent more time in EC while P50-80 animals 

spent more time in FSP. (* was used to denote statistical significance. *= p<0.05, **= 

p<0.01 when compared to P90 animals) 
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Figure 9: Spike Frequency Modulates for Seizure Pattern and Postnatal Age 

Spike frequency was quantified for each pattern using 6-12 second epochs of 

time. Spike frequency showed a noticeable increase in the early stages of SE. Spike 

frequency increased 1 .O-2.0 Hz from W/W pattern to the F/S spiking pattern in all animal 

ranges studied ( W/W: 5.91k0.24 Hz ; F/S: 7.20k0.25 Hz). Spike frequency increased 1- 

2 Hz again and remained at a high level through EC and FSP patterns (EC: 9.04f 0.60 Hz; 

FSP: 8.32f 0.48 Hz). Postnatal-30 and 40-day animals were differentiated from P90 

animals by significant lower recordings in spike frequency values (P30: p<0.001 6.26 

f0.50 Hz; FSP, P40: p<0.01, 6.80f0.65 FSP, one-way ANOVA with Tukey post hoc 

analysis). Spike frequency was also different than P90 animals in the fast and slow 

patterns (P40, fast: p<0.001, 8.07f0.56 Hz; P40 slow p<0.05, 4.52f0.15 Hz, one-way 

ANOVA with Tukey post hoc analysis). On average these age ranges were lower than 

P50-P90 age ranges. (* was used to denote statistical significance when compared 

against P90 animals. *= p<0.05, **= p<0.01, ***= p<0.001 when compared to p90 

animals) 
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Figure 9: Spike frequency in seizure pattern for each postnatal age. Calculated 

means are expressed as columns and standard error of the mean +1 are expressed as 

error bars. 
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Figure 10: P50 Animals Show Age Dependent Modulation of Seizure Severity in 

qEEG Analysis 

The delta frequency range (1 .O-3.99 Hz) has been shown to measure brain 

pathology and severity during seizures [70, 711. Relative percentage (% of total power) 

values for this frequency range suggest that severity is dependent on age, not pattern. 

Delta qEEG analysis displayed lower values in P50-80 day animals when compared to 

P90 and P30-40 animals for different seizure patterns. During each pattern, there was a 

noticeable dip for P50 ages and significant differences with P90 animal values (FSP and 

EC; p<0.001 P50, P80: p<0.01, P60, one-way ANOVA with Tukey post hoc analysis). 

Postnatal-30 and 40-day animals had significantly higher relative delta values when 

compared to P50-80 animals which differentiated this age group (p<0.001, one-way 

ANOVA with Tukey post hoc analysis). * was used to denote statistical significance 

when compared against P90 animals. *= p<0.05, ***= p<0.001 when compared to P90 

animals) 
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Figure 10: Relative Delta percentage for seizure pattern during SE. Calculated 

means are expressed as columns and standard error of the mean +1 are expressed as 

error bars. 
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STATUS EPILEPTICUS-INDUCED LOSS OF DIAZEPAM 
EFFICACY IS AGE DEPENDENT IN THE RAT PILOCARPINE-SE 

MODEL 

ABSTRACT 

Purpose: This study was conlpleted to characterize drug efficacy in the initial therapeutic 
window of SE during post-juvenile ages. 
Methods: SE was induced by pilocarpine (300 mglkg) in Wistar rats aged P30, P50, and 
P90. Diazepam was administered at 10, 15,20 minutes after the onset of the first discrete 
seizure (PlDS). Electrographic activities were monitored by video EEG (BMSI 5000, 
Nicolet) and spike frequency obtained using Insight software. 
Results: Postnatal-90-day animals showed no significant spike frequency reduction at 10 
minute PlDS (paired Students t test, p>0.05) and displayed significant spike frequency 
increases at 15 and 20 minute PlDS (paired Student's t-test, p<0.05). P50 animals 
displayed a significant response to diazepam at 10 minute PlDS (paired Student's t-test, 
p<0.05) and a small reduction in frequency at 15 and 20 PlDS. Pubescent animals had a 
similar response as P50 animals at 10 minute PlDS. 
Conclusion: These results suggest that there is an age dependent change of drug efficacy 
during SE. 
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INTRODUCTION 

Status Epilepticus (SE) is a neurological emergency of continuous or intermittent 

seizure activity that has been described and identified since 600-700 B.C. [4, 5, 131. 

Approximately 150,000 cases of SE are reported each year with many cases resulting in 

mortality [4, 5, 131 . The highest incidence of SE occurs in children less than three years 

old and may precede the development of epilepsy in later life [I ,  4, 51. Many of the anti- 

epileptic drugs in use fail to terminate seizure activity, and of the drugs that are effective, 

most lose their therapeutic efficacy as SE progresses [5, 12-14, 68, 8 11. Thus, an 

examination of the age effects of SE using a common anti-epileptic drug is warranted. 

Previous studies have suggested SE characteristics are age-dependent in the 

pilocarpine model of limbic epilepsy [19, 211. What these studies failed to investigate is 

SE-induced loss of drug efficacy using a common benzodiazepine during post-juvenile 

ages: P30 (pubescent), P50 (adolescent), and P90 (adult). These ages have been shown to 

correspond to post-juvenile and adult humans, an age group understudied in relation to 

SE characteristics [21, 62, 731. 

To combat SE, many anti-epileptic drugs are used in combination or singly to 

treat this life threatening condition. Specifically, the benzodiazepines (diazepam, 

clonazepam, clorazepate, lorazepam, midazolam) are a frontline treatment with diazepam 

a drug of choice [13]. Through its rapid crossing of the blood brain barrier and allosteric 

modulation of the GABA receptor diazepam has been shown to stop SE. This compound 

should be administered immediately due to a correlation with SE duration and loss of 

drug efficacy [14, 681; however, few studies have characterized SE induced loss of 
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diazepam efficacy as age dependent. Therefore, a detailed study concerning the loss of 

drug efficacy and it relation to age was undertaken. 
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MATERIALS AND METHODS 

Induction of Status Epilepticus 

Male Wistar rats were purchased from Harlan Laboratories (Indianapolis, IN, 

USA), housed with food and water a d  libitum, with lighting on a 12 hour odoff cycle. 

The software used for analysis (Insight, Insight 11) was purchased from Persyst 

Corporation (Prescott, AZ). All animal use procedures were in strict accordance with the 

National Institutes of Health Guide for the Care and Use of Laboratory Animals and were 

approved by the Virginia Commonwealth University Institutional Animal Care and Use 

committee. 

Five days prior to the experiment, four surface electrodes were surgically 

implanted into the skull of Male Wistar rats under ketamine (125 mglkg i.p.)-xylazine (1 

mglkg) anesthesia. Two frontal electrodes were implanted over the frontal cortex (3.5 

mm anterior to Bregma, &2.5 mm left or right of sagittal suture). Two posterior leads 

were implanted over parietal cortex and hippocampus (2.0 mm posterior to bregma, h2.5 

mm left or right of sagittal suture). Electrodes were secured with dental acrylic and 

animals were allowed to recover for at least five days. Four separate bipolar channels 

were recorded with a montage of F 1 -F2, F 1 -P 1, F2-P2, and P 1 -P2. On the day of the 

experiment animals were connected via headset to EEG machines (BMSI 5000, Nicolet), 

and baseline recordings were obtained. To induce seizure activity, pilocarpine (300 

mglkg i.p. Sigma, St. Louis, Mo), a muscarinic agonist, was injected. 

Methylscopolamine, a muscarinic antagonist that does not cross the blood brain barrier, 

was administered i.p. (1 mglkg) 30 minutes prior to pilocarpine injection to reduce 

peripheral affects [21, 25, 571. All materials and diazepam were reagent grade and 
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purchased from Sigma Chemical Company (St. Louis, MO, USA) unless otherwise 

stated. Animals were monitored for behavior and electrographic activity throughout the 

procedure using video and EEG recordings. 

Drug Treatment 

Diazepam was administered i.p. (4 mglkg) 10, 15, and 20 minutes post onset of 

the initial discrete seizure (PlDS). Twenty-five spike frequency recordings were 

completed in twelve second epochs beginning five minutes prior to drug injection. After 

drug injection, 15 millutes were allowed for absorption and distribution of the drug [82], 

and then frequency recordings were repeated. Efficacy was determined measuring the 

posttreatment spike frequency values then comparing them to pretreatment values. 

Electrographic and Statistical Analysis: 

For EEG analysis, the notch filter was set at 60 Hz, the sampling rate set at 420 

Isec per channel, the low pass frequency set at 100 Hz, and high pass set at 2 Hz. 

Preinjection and postinjection comparisons were made with paired Student's t-test using 

Graph Pad-Prism 4.0 for windows (Graph Pad software, San Diego, CA USA, 

www.graphpad.com). Data are expressed as mean * standard error of the mean. 
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RESULTS 

P90 Animal Diazepam Efficacy 

Seventy-two animals in three postnatal age groups (30, 50, 90) were used to 

characterize diazepam efficacy in the initial stages of status epilepticus. Animals 

typically began the acute discrete seizure phase 17.0f 1.5 mi,nutes after pilocarpine 

injection. From the initial onset of ictal activity the acute discrete seizure phase averaged 

11 .Sf 1.5 minute's time in phase, ranging between 9.50-14 minutes, and averaged 3 

discrete seizures per phase in all age groups studied. Thus, the ten-minute treatment 

mark was selected to ensure that diazepam was injected near onset of SE by accounting 

for the discrete seizure period. Using this as a standard injection point P50 and P90 

animal posttreatment spike frequencies were measured in the EC seizure pattern (-9.00 

Hz); P30 posttreatment measurements were completed in the fastlslow spiking pattern 

(-8.00 Hz). 

Seven of the eight P90 animals displayed reductions in spike frequency 

posttreatment for the ten minute treatment mark (n=8 animals). The pretreatment 

recorded spike frequency for P90 animals was 4.39k0.75 Hz and the posttreatment spike 

frequency was 3.382 1 .O1 Hz. This resulted in a 23.0% frequency reduction in 

posttreatment values which was not significantly lower than pretreatment values (Figure 

11A). However; this represented an approximate 5.50-6.00 Hz reduction for the EC 

seizure pattern. 

To ensure that efficacy was measured during the duration of SE, the 15 minute 

treatment mark was chosen to approximate five minutes of elapsed SE. Out of the eight 

animals that progressed to SE, one P90 animal displayed posttreatment spike frequency 
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reductions. The pretreatment spike frequency was 5.27f 0.71 Hz and posttreatment spike 

frequency was 6.67f 0.83 Hz for P90 animals. This was a significantly higher spike 

frequency posttreatment value when compared to pretreatment values in P90 animals 

(25% increase; p<0.05, paired Student's t-test, Figure 11A). Even though posttreatment 

values did increase in spike frequency, there was average reduction of two Hz in spike 

frequency for the EC seizure pattern in P90 animals. 

To observe the loss of therapeutic efficacy as SE progresses, the 20 minute post 

first discrete seizure treatment mark was selected. Two P90 animals showed spike 

frequency reductions at the twenty minute treatment mark out of eight P90 animals that 

progressed to SE. The pretreatment average spike frequency was 6.87f 0.40 Hz and 

posttreatment average spike frequency 7.8220.71 Hz for P90 animals (Figure 11A). This 

resulted in significantly higher posttreatment spike frequency average in P90 animals 

(14% increase, p<0.05, paired Student's t-test). This was only a 1 Hz reduction in the 

average EC spike frequency. The data suggest that diazepam efficacy is lost very early in 

the progression of SE in P90 animals. 

P50 Animal Diazepam Efficacy 

Seven out of eight P50 animals observed progressing into SE showed reductions 

in spike frequency posttreatment. The pretreatment spike frequency average was 

4.98f 0.87 Hz and the posttreatment spike frequency was 1.80k1.24 Hz, for P50 animals 

(Figure 1 1 By n=8 animals). This resulted in a significantly lower percentage in 

posttreatment values as compared to pretreatment values (64%; p<0.05, paired Student's 

t-test). Furthermore, diazepam injection resulted in an approximate 7 Hz reduction for 

the average spike frequency for the EC seizure pattern in P50 animals. 
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Five P50 animals had reduced spike frequencies in posttreatment recordings for 

the 15-minute treatment mark (Figure 1 IB, n=8 animals). The pretreatment average 

spike frequency value for P50 animals was 8.60f0.46 Hz. This was similar to the 

posttreatment spike frequency average of 8.43f 0.28 Hz for the 15 minute treatment mark 

and this resulted in a statistically insignificant 2.0% drop in frequency posttreatment for 

P50 animals (Figure 1 B). Similar to P90 animals, posttreatment spike frequency 

measurements were close to average spike frequencies for the EC seizure pattern in P50 

animals. 

Four P50 animals had spike frequency reductions out of the eight animals studied 

that progressed to SE. Postnatal-50-day animals had a slight frequency reduction of .Ol% 

in posttreatment values which was not sigilificailtly different than pretreatment values 

(Pre; 8.39f0.44 Hz: Post; 8.32k0.27 Hz, Figure 11B). This was similar to the 15-minute 

treatment mark. The data suggest diazepam does work in P50 animals at the onset of SE. 

Pubescent Animal Diazepam Efficacy 

All P30 animals displayed a reduction in posttreatment spike frequencies and had 

the greatest efficacy for diazepam out of all animals studied (Figure 1 1 C). Pretreatment 

spike frequency averaged 5.72f 0.82 Hz and posttreatment values were reduced to a 

baseline average of 0.57f 0.10 Hz (Figure 1 lC, n=8 animals). This resulted in a 

significantly lower posttreatment spike frequency (90.0%) and a drop of approximately 

8.00 Hz in the fastlslow pattern (p<0.01, paired Student's t-test, n=8 animals). 

Pubescent animals had the best response to diazepam at the 15 treatment mark out 

of all animals studied with six animals responding to diazepam. Postnatal-30-day 

animals averaged 7.62f0.76 Hz for the pretreatment value and 6.53k1.7 Hz posttreatment 
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spike frequency average. Although these observations were similar (p>0.05, paired 

Students t test, n=8 animals), it still resulted in a 14% drop in spike frequency for the 15 

minute treatment mark (Figure 1 C). 

Similar to the 15 treatment mark, P30 animals displayed reduction in spike 

frequency at the 20 minute treatment mark. The pretreatment average spike frequency 

was 6.57%f 1.06 Hz and posttreatment spike frequency average of 5.91 f 1.37 Hz in 

pubescent animals (Figure 1 1 C). These measurements were similar to each other, yet 

there was a 10% reduction in posttreatment spike frequency values and an approximate 

three Hz reduction in the average spike frequency for the fastlslow pattern. The data 

suggest that P30 animals displayed the greatest response to diazepam at the onset of SE. 

The efficacy of this drug continued as SE progressed. However, the efficacy was not as 

great when compared to the initial stages of SE. The data further suggest that during 

post-juvenile ages, diazepam efficacy is altered during the initial stages of SE. 
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DISCUSSION 

In summary, pubescent and P50 animals had a significant response to diazepam at 

10 min P 1 DS. Additionally, at 15 minute Pl  DS both age groups showed, although not 

significant, slight responses to the compound. Even though P90 animals displayed a 

similar response to diazepam at 10 minute P 1 DS, the responses at 15 and 20 P 1 DS 

showed significant increases in spike frequency. The data suggest an age related 

response to diazepam during the therapeutic window of SE. Younger, immature animals 

had a significant response to diazepam early in SE and a diminished response as SE 

progressed. Postnatal-90-day animals had a slight response to diazepam early in the 

window and no response as SE progresses. 

This study used the pilocarpine model of limbic epilepsy to characterize efficacy 

in the therapeutic window of SE. The data demonstrated that younger animals had a 

better response to the drug and significantly modulated efficacy in comparison to P90 

animals. Future studies will encase all postnatal ages and may include other compounds 

to investigate this observation. 
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Figure 11: Status epilepticus was induced by pilocarpine, and the typical progression 

into seizures was observed. From the first ictal activity in the acute discrete seizure phase 

animals were injected with diazepam at 10, 15, and 20 minutes. In order to get a 

pretreatment average, frequency was measured for five minutes prior to that injection 

mark. After treatment, 15 minutes were allowed for drug distribution, and then another 

five minutes was measured. Efficacy was determined by analyzing pre and posttreatment 

frequencies. Postnatal-30 and 40-day animals had the greatest response to diazepam. 

The ten-minute mark for P30-40 and P50 animals was significantly lower in 

posttreatment values (P30: p<0.01; P50: p<0.05, paired Students t test). At the fifteen- 

minute mark, P30-40 and P90 animals did respond to diazepam. Postnatal-90-day 

animals had a significant increase in frequency posttreatment (p<0.05, paired Students t 

test). This significant increase in frequency for P90 animals was observed again at the 20 

minute mark (p<0.05, paired Students t test). Postnatal-30 and 40-day and P50 animals 

did have a slight reduction in frequency at the twenty minute treatment mark. **=p<0.01, 

*=p<0.05 when compared to P90 animals. 



www.manaraa.com

2 
5 6  

5 
L 4 + 
a, 3 
Y 
a 2 
'I) 1 

0 
l 0 p r e l 0  post15 pre15 post20 pre20 post 

Post natal 90 day 

10 
A 9 
N 
f. 8 

2 
5 6 
s 5 
2 4 
yl 

a, 3 
Y 
a 2  
'I) 1 

0 

Post natal 50 day 

N 

5 8 
h 7  
0 

5 s 5 
L 4 
yl 

a, 3 
Y 
a 2 
'I) 1 

0 

Post natal 30 day 



www.manaraa.com

DISCUSSION 

The rat pilocarpine-SE model was utilized to detail seizure characteristics 

of status epilepticus for 60 minutes, a standard time frame for observing status epliepticus 

[21-251. This model was further utilized to examine diazepam efficacy in the therapeutic 

window of SE. The first study showed that seizure characteristics in the acute discrete 

seizure phase changed at certain developmental stages. Racine severity scores, seizure 

termination profiles, conlposite spectral analysis, and spike frequency were significantly 

modulated as animals continued to develop in post-juvenile ages (P30-80). The second 

paper examined seizure characteristics in the chronic status epilepticus phase and 

established correlations with the acute discrete seizure phase. Time and frequency 

characteristics established differences in seizure pattern between early and late SE. 

Spectral analysis defined severity as a function of age, not seizure pattern. Correlations 

were observed between SE onset and behavioral severity. The third study displayed SE- 

induced loss of diazepam efficacy may be related to post-juvenile developmental stage 

and seizure duration. Posttreatment spike frequencies for post-juvenile and P50 animals 

were significantly less at certain time points when compared to P90 animals. The data 

demonstrated that seizure characteristics of SE modulate during post-juvenile ages and 

that drug efficacy loss could be related to age. These findings suggest that the variability 
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in results reported in this model is age dependent and establishes postnatal age as an 

identifier of post-juvenile developmental stage. 

The incidence of SE has been shown to be an event experienced mostly in 

juveniles and the elderly [7,30,3 11. Studies have reported that adolescents and adults 

have a mucl~ lower occurrence of this disease [7,30, 3 11. To investigate this observation 

many animal models are utilized to replicate the human condition [lo- 12, 19,20,45,70, 

83-91]. The accepted model of choice has been the pilocarpine-SE model. Many of the 

seizure characteristics can mimic the predictable seizure patterns observed in the human 

condition [9]. This model has shown age dependence in juvenile and adult animals to 

the seizure inducing agent pilocarpine [19,21,25]. The reason for this may be found in 

the development of the cholinergic system and the cholinergic activity of pilocarpine [19, 

58,921. Cavalheiro et a1 demonstrated that rats injected with pilocarpine at 7-12 

postnatal days were not as susceptible to seizures as P15 to P21 rats [19]. This was 

suggested to be due to the final development of the cholinergic system in rats during 

postnatal ages P15-P2 1 [19]. Another study by Hamani et a1 , found that after creating 

bilateral anterior thalamic lesions and administering pilocarpine, animals did not produce 

seizures [58]. This may be due to the loss of thalamic stimulus and the cholinergic 

projection from the non-striatal telencephalon [93]. The thalamus has been shown to be 

the originator of EEG activity [18]. In addition, structures involved in cholinergic 

activity, such as the thalamus, amygdala, hippocampus, and subsantia nigra, may go 

through post-juvenile development that may decrease the susceptibility to pilocarpine. 

These structures have been shown to have widespread damage from pilocarpine induced 

seizures [92]. Although age dependence to pilocarpine in this model has been shown; 
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separate studies have reported a large variability in results for this model [19, 21, 57, 581. 

This may be a direct consequence of using animal weight as a classifier of development 

in animal post-juvenile ages. Across many laboratories, there is high degree of variance 

between the definition of adolescence or adulthood using body weight of the animal. 

Human and animal brains develop in a manner that does not parallel body growth 

rate [46-49, 551. The human brain develops in growth spurts that are preceded by 

increases in cerebral blood flow [46-48, 551. Many of the growth stages occur before the 

age of six years; from this age brain weight remains relatively stable until the age of 20 

years [46-481. During this aging process, human reasoning develops in stages of 

cognitive developn~ent identified by the Swiss psychologist Jean Piaget [46-48, 551. 

Furthermore, adolescence is a time of many internal changes unrelated to brain size and 

growth [76, 771. In adolescence, the brain increases myelination, volume of white matter, 

and many neural connections become active [76, 771. Many of the reported incidents of 

schizophrenia and bipolar disorder occur during adolescence [77]. The observation of 

final brain development after juvenile ages is also observed in rats [38,40,49, 56, 651. 

The rat brain does finalize circuitry during this time and changes in GABA receptor 

subunits are observed [38, 40, 49, 56, 651. Thus, a lack of synchrony exists between 

body weight and the developing brain. 

A common observation throughout this study was that results for P30-40 animals 

confounded expectations. This age group had many characteristics that were either 

similar or dissimilar to P90 animal results. Racine behavioral severity scores were 

similar to P90 animal scores. Increases in relative delta percentages over baseline for 

discrete seizures in this age group averaged 17.08%, which was similar to P90 animal 
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percentages. EEG slowing profiles for the delta component were similar to P90 animals. 

In addition, when this age group was included, a correlation existed with SE onset 

probability. Spike frequencies for P30-40 animals however, were significantly lower 

than P90s. When P30-40 animals were included in certain correlation tests with all 

animals, poor correlations were observed. When omitted, a#positive correlation could 

then be established. In addition, postnatal-30-day animals had the greatest efficacy 

response to diazepam in this study. Conversely, this age range had a large difference in 

body weight when compared to P50 and P90 animals. Postnatal-30 and 40-day animals 

averaged 138.98k2.59 grams, which was 64% lower than P90 animal average weight of 

383.40k2.82 grams. These findings suggest that this is a separate age range. 

Postnatal-50 through 80 day animals in this study provided consistently lower 

values in seizure characteristics when compared to P90 animals. Racine scores for this 

age range remained less severe when compared to P90 animals. Spike frequency 

recording for this age range started significantly lower than P90 measurements then 

progressively increased to P90 levels. Composite spectral analysis for P50 animals 

displayed less EEG slowing in the delta frequency range when compared to P90 animals. 

Relative delta percentages for P50 discrete seizures were significantly lower than P90 

animal percentages. In the chronic SE seizure phase, severity was related to animal age 

in P50-80 animals as opposed to specific seizure pattern. Furthermore, when these ages 

were analyzed for correlations between each phase, positive correlations existed in most 

parameters tested. These correlations establish that seizure characteristics in this model 

change in relation to postnatal age. The average weight of a P50 animal was 

approximately 279.92k6.13 grams, which was a 25% difference (90- 100 gms) when 
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compared to P90 animals. As animals aged from adolescence this percentage 

progressively decreased. While there was a large difference in SE seizure characteristics 

between P50 and P90 animals, specifically, P50 animals were the lowest value observed 

throughout this study in the multiple parameters examined. This was not seen in P30-40 

animals. Postnatal-30 and 40-day animals had many characteristics that were the same as 

P90 animals; however this age group had a much larger difference in body weight when 

compared to P90 animals. An average P50 animal had major differences with P90 

animals in seizure characteristics examined, yet was close in body weiglit to P90 animals. 

This observation held true for P60 animals as well. Postnatal-70 and 80-day animals 

were approxinlately 4-5% (P70-80:-360*5 grams vs P90: 383*2.85 grams) different in 

body weight when compared to P90 animals. Racine scores, relative delta percentages 

for seizure pattern, and spike frequency were different for these animal ages when 

compared to P90 animals. This suggests that body weight does not affect seizure 

characteristics and cannot explain the variability in reported results for the pilocarpine-SE 

model. 

One problem exists with the treatment of SE in humans. During the initial 

seizure patterns of SE, anti-epileptic drugs lose their therapeutic value as the condition 

progresses [12,68]. The underlying mechanisms for this are unknown. The data 

demonstrated that diazepam efficacy may be related to age of the patient and not a 

function of time. This finding may have gone unnoticed in previous studies due to the 

use of body weight to identify developmental stage. 

This project was made up of three separate studies that examined the neurological 

emergency, status epilepticus. The first study examined the acute discrete seizure phase 
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and found that many of the seizure characteristics were related to postnatal age. The 

second study examined the chronic SE phase and determined that severity was related to 

age and not pattern. The third study showed that therapeutic efficacy of an anti-epileptic 

drug may be related to age. These findings support the hypothesis that seizure 

characteristics of SE are age dependent during post-juvenile ages. Furthermore, age 

should be used to classify developmental stage. Future studies may expand the 

examination of the initial therapeutic time frame of SE and seizure severity as they relate 

to developmental stage. 
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